It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The current study investigated a triad, which comprises of adipose tissue derived stem cells isolated from infrapatellar fat pad and gelatin/polyvinyl alcohol (PVA)-based matrix with exclusive ascorbic acid signalling. Though, the bio-mechanical properties of the gelatin–PVA blended scaffolds in wet condition are equivalent to the ECM of soft tissues in general, in this study, the triad was tested as a model for neural tissue engineering. Apart from being cytocompatible and biocompatible, the porosity of the scaffold has been designed in such a manner that it facilitates the cell signalling and enables the exchange of nutrients and gases. The highly proliferative stem cells from Passage 2 were characterized using both, mesenchymal and embryonic stem cell markers. As an initial exploration the mesenchymal stem cells at Passage 4 were exposed to ascorbic acid and basic fibroblast growth factor signalling for neuronal differentiation in 2D environment independently. The MSCs successfully differentiated and acquired neuron specific markers related to cytoskeleton and synapses. Subsequently, three phases of experiments have been conducted on the 3D gelatin/PVA matrix to prove their efficacy, the growth of stem cells, growth of differentiated neurons and the in situ growth and differentiation of MSCs. The scaffold was conducive and directed MSCs to neuronal lineage under specific signalling. Overall, this organotypic model triad could open a new avenue in the field of soft tissue engineering as a simple and effective tissue construct.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Crystal Growth Centre, Anna University, Guindy, Chennai-600025, India
2 Cell Laboratory, National Foundation for Liver Research, No.7, CLC works Road, Chennai-600044, India
3 Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València , Valencia 46022, Spain
4 MIOT Institute of Research, MIOT Hospitals, 4/112, Mount Poonamallee Road, Chennai-600089, India