It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
RNA secondary structures play essential roles in the formation of the tertiary structure and function of a transcript. Recent genome-wide studies highlight significant potential for RNA structures in the mammalian genome. However, a major challenge is assigning functional roles to these structured RNAs. In this study, we conduct a guilt-by-association analysis of clusters of computationally predicted conserved RNA structure (CRSs) in human untranslated regions (UTRs) to associate them with gene functions. We filtered a broad pool of ∼500 000 human CRSs for UTR overlap, resulting in 4734 and 24 754 CRSs from the 5′ and 3′ UTR of protein-coding genes, respectively. We separately clustered these CRSs for both sets using RNAscClust, obtaining 793 and 2403 clusters, each containing an average of five CRSs per cluster. We identified overrepresented binding sites for 60 and 43 RNA-binding proteins co-localizing with the clustered CRSs. Furthermore, 104 and 441 clusters from the 5′ and 3′ UTRs, respectively, showed enrichment for various Gene Ontologies, including biological processes such as ‘signal transduction’, ‘nervous system development’, molecular functions like ‘transferase activity’ and the cellular components such as ‘synapse’ among others. Our study shows that significant functional insights can be gained by clustering RNA structures based on their structural characteristics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Center for non-coding RNA in Technology and Health, University of Copenhagen , Ridebanevej 9, 1870 Frederiksberg, Denmark
2 Bioinformatics Group, Department of Computer Science, University of Freiburg , Freiburg im Breisgau, Germany