It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the past decade, there has been a growing appreciation for R-loop structures as important regulators of the epigenome, telomere maintenance, DNA repair, and replication. Given these numerous functions, dozens, or potentially hundreds, of proteins could serve as direct or indirect regulators of R-loop writing, reading, and erasing. In order to understand common properties shared amongst potential R-loop binding proteins, we mined published proteomic studies and distilled 10 features that were enriched in R-loop binding proteins compared with the rest of the proteome. Applying an easy-ensemble machine learning approach, we used these R-loop binding protein-specific features along with their amino acid composition to create random forest classifiers that predict the likelihood of a protein to bind to R-loops. Known R-loop regulating pathways such as splicing, DNA damage repair and chromatin remodeling are highly enriched in our datasets, and we validate 2 new R-loop binding proteins LIG1 and FXR1 in human cells. Together these datasets provide a reference to pursue analyses of novel R-loop regulatory proteins.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer