It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background and aims
Mangroves of Western Gujarat (India) are subject to die-back. Salinity intolerance is one possible cause, especially in young plants. We therefore quantified the extent to which young plants of one widely occurring mangrove species (Ceriops tagal) tolerate high salt in terms of establishment, growth, water status, proline content and mineral accumulation.
Methodology
In a greenhouse study, juvenile plants were established from mature propagules over 40 days in soil containing added NaCl, raising soil water salinity to 0.2, 2.5, 5.1, 7.7, 10.3, 12.6, 15.4, 17.9, 20.5 and 23.0 ppt (w/v). Growth and physiological characteristics were monitored over the subsequent 6 months.
Principal results
Despite a negative relationship between the percentage of young plant establishment and salt concentration (50 % loss at 22.3 ppt), the remaining plants proved highly tolerant. Growth, in dry weight, was significantly promoted by low salinity, which is optimal at 12.6 ppt. Water content, leaf expansion and dry matter accumulation in tissues followed a similar optimum curve with leaf area being doubled at 12.6 ppt NaCl. Salinity >12.6 and <23 ppt inhibited plant growth, but never to below control levels. Root:shoot dry weight ratios were slightly reduced by salinity (maximum 19 %), but the water potential of roots, leaves and stems became more negative as salinity increases while proline increases in all tissues. The concentration of Na increased, whereas concentrations of K, Ca, N and P decreased and that of Mg remained stable.
Conclusions
Ceriops tagal has a remarkably high degree of salinity tolerance, and shows an optimal growth when soil water salinity is 12.6 ppt. Salinity tolerance is linked to an adaptive regulation of hydration and ionic content. The cause of localized die-back along the coastal region of Gujarat is thus unlikely to be a primary outcome of salinity stress although amendments with Ca and K, and perhaps proline, may help protect against extreme salinity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
2 National Research Centre for Agroforestry, Jhansi 284003, India; Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India