It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Feedbacks between plants and soil biota are increasingly identified as key determinants of species abundance patterns within plant communities. However, our understanding of how plant–soil feedbacks (PSFs) may contribute to invasions is limited by our understanding of how feedbacks may shift in the light of other ecological processes. Here we assess how the strength of PSFs may shift as soil microbial communities change along a gradient of soil nitrogen (N) availability and how these dynamics may be further altered by the presence of a competitor. We conducted a greenhouse experiment where we grew native Stipa pulchra and exotic Avena fatua, alone and in competition, in soils inoculated with conspecific and heterospecific soil microbial communities conditioned in low, ambient and high N environments. Stipa pulchra decreased in heterospecific soil and in the presence of a competitor, while the performance of the exotic A. fatua shifted with soil microbial communities from altered N environments. Moreover, competition and soil microbial communities from the high N environment eliminated the positive PSFs of Stipa. Our results highlight the importance of examining how individual PSFs may interact in a broader community context and contribute to the establishment, spread and dominance of invaders.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Environmental Science, Policy & Management, University of California Berkeley, 137 Mulford Hall, Berkeley, CA 94720-3114, USA; Present address: EBIO, University of Colorado, Ramaley N122, Campus Box 334, Boulder, CO 80309-0334, USA