It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Synopsis
Piper is a mega-diverse genus of pioneer plants that contributes to the maintenance and regeneration of tropical forests. In the Neotropics, Carollia bats use olfaction to forage for Piper fruit and are a main disperser of Piper seeds via consumption and subsequent defecation during flight. In return, Piper fruits provide essential nutrients for Carollia year-round. There is evidence that the types and diversity of Piper frugivores are influenced by the primary habitat type of different Piper species (forest and gap), with forest Piper depending more on bats for seed dispersal; however, this pattern has not been tested broadly. We aimed to characterize and compare the interactions between Carollia and Piper across forested and gap habitats, and further investigate whether differences in fruit traits relevant to bat foraging (i.e., scent) could underlie differences in Carollia-Piper interactions. We collected nightly acoustic ultrasonic recordings and 24 h camera trap data in La Selva, Costa Rica across 12 species of Piper (six forest, six gap) and integrated this information with data on Carollia diet and Piper fruit scent. Merging biomonitoring modalities allowed us to characterize ecological interactions in a hierarchical manner: from general activity and presence of bats, to visitations and inspections of plants, to acquisition and consumption of fruits. We found significant differences in Carollia-Piper interactions between forested and gap habitats; however, the type of biomonitoring modality (camera trap, acoustics, diet) influenced our ability to detect these differences. Forest Piper were exclusively visited by bats, whereas gap Piper had a more diverse suite of frugivores; the annual diet of Carollia, however, is dominated by gap Piper since these plants produce fruit year-round. We found evidence that fruit scent composition significantly differs between forest and gap Piper, which highlights the possibility that bats could be using chemical cues to differentially forage for gap vs. forest Piper. By integrating studies of Piper fruit scent, plant visitation patterns, and Carollia diet composition, we paint a clearer picture of the ecological interactions between Piper and Carollia, and plant-animal mutualisms more generally.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Chemistry, University of Washington , Seattle, WA 98195, USA
2 Department of Biology, University of Washington , Seattle, WA 98195, USA
3 Sede del Sur, Universidad de Costa Rica , Golfito 60701, Costa Rica