Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Buildings account for a substantial portion of global energy use, with about one-third of total consumption attributed to them, according to IEA statistics, significantly contributing to carbon emissions. Building energy efficiency is crucial for combating climate change and achieving energy savings. Smart buildings, leveraging intelligent control systems, optimize energy use to reduce consumption and emissions. Deep reinforcement learning (DRL) algorithms have recently gained attention for heating, ventilation, and air conditioning (HVAC) control in buildings. This paper reviews current research on DRL-based HVAC management and identifies key issues in existing algorithms. We propose an enhanced intelligent building energy management algorithm based on the Soft Actor–Critic (SAC) framework to address these challenges. Our approach employs the distributed soft policy iteration from the Distributional Soft Actor–Critic (DSAC) algorithm to improve action–state return stability. Specifically, we introduce cumulative returns into the SAC framework and recalculate target values, which reduces the loss function. The proposed HVAC control algorithm achieved 24.2% energy savings compared to the baseline SAC algorithm. This study contributes to the development of more energy-efficient HVAC systems in smart buildings, aiding in the fight against climate change and promoting energy savings.

Details

Title
Enhancing HVAC Control Systems Using a Steady Soft Actor–Critic Deep Reinforcement Learning Approach
Author
Sun, Hongtao 1 ; Hu, Yushuang 1 ; Luo, Jinlu 2   VIAFID ORCID Logo  ; Guo, Qiongyu 3 ; Zhao, Jianzhe 2   VIAFID ORCID Logo 

 School of Architecture and Urban Planning, Shenyang Jianzhu University, Shenyang 110168, China; [email protected] (H.S.); [email protected] (Y.H.) 
 Software College, Northeastern University, Shenyang 110169, China; [email protected] 
 China Mobile System Integration Co., Ltd., Baoding 071700, China; [email protected] 
First page
644
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170904812
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.