Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A textile electrochemical sensor manufactured with commercially available textile materials is presented to determine glucose concentration. The sensor design consists of three electrodes manufactured with two different conductive yarns, one made with a silver coating and the other with stainless steel fibres. Different combinations of them are used to prepare three different electrochemical textile sensor combinations. The first sensor is built only with silver-coated yarn and used as a reference sensor. The other two sensors are prepared with different combinations of conductive yarns. The textile sensors perform a cyclic voltammetric test, where it is demonstrated that the glucose concentration over the sensor can be related with the increase in the current measured. The results allow us to identify feeding voltages where the concentration–current relation is close to linear. The textile sensor shows a sensitivity between 0.0145 and 0.0452 μA/(mg/dL) for the 45–180 mg/dL glucose concentration range and 0.0012 and 0.0035 μA/(mg/dL) for the 180–1800 mg/dL range for the different sensor types presented. The regression coefficients for the sensitivities range between 0.9266 and 0.9954. This research demonstrates the feasibility to develop a fully integrated textile electrochemical sensor made completely with commercially available textile materials.

Details

Title
An Embroidered Electrochemical Sensor to Measure Glucose Made with Commercially Available Textile Materials
Author
Martínez-Estrada, Marc  VIAFID ORCID Logo  ; Gil, Ignacio  VIAFID ORCID Logo  ; Fernández-García, Raúl  VIAFID ORCID Logo 
First page
109
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170946720
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.