Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful noninvasive analytical technique with widespread applications in biochemical analysis and biomedical diagnostics. The need for highly sensitive, reproducible, and efficient detection of biomolecules in complex biological environments has driven significant advancements in SERS-based biosensing platforms. In this context, micro/nanomachines (MNMs) have garnered attention as versatile SERS-active substrates due to their unique structural and motional characteristics at the micro- and nanoscale. This review explores the advantages of integrating MNMs with SERS for biosensing, discussing recent technological advances, various propulsion strategies, and their potential in a range of analytical applications.

Details

Title
SERS-Active Micro/Nanomachines for Biosensing
Author
Li, Chenbing; Zhang, Wenqing  VIAFID ORCID Logo  ; Zheng, Kai; Guo, Jianhe  VIAFID ORCID Logo 
First page
115
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170947083
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.