Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The high viscosity and oxygen content of pyrolysis crude oil hinder the advancement of pyrolysis technology. To address the issue, this study conducted hydrodeoxygenation upgrading experiments on pyrolysis crude oil using hydrothermal directional conversion. A variable analysis was performed to assess the differences in upgrading effects based on the active metal (Ru, Pt) and the supports (activated carbon, Nb2O5, MgO) of the supported catalyst, and further investigations were conducted on the catalyst with bimetallic doping modification. Optimal reaction conditions were determined by adjusting the reaction temperature. Additionally, directional conversion studies of model compounds were carried out to elucidate the reaction pathway. The results indicated that the Pt/MgO catalyst achieved the highest yield of stable and combustible compounds (hydrocarbons, alcohols, ethers, esters, and ketones), with a yield of 17.8 wt%. Upon modification with Ni doping, the yield increased by 49.5%. The upgrading effect improved with an increase in reaction temperature, and the yield of target compounds was 26.7 wt% at 290 °C, with an energy conversion rate of 72.6% and a selectivity of 75.8%. Moreover, the physicochemical properties of the upgraded oil were similar to those of ethanol. All three model compounds underwent 100% conversion. This study provides both experimental support and a theoretical foundation for the further development of biomass conversion technology.

Details

Title
Experimental Study and Reaction Pathway Analysis of Solvothermal Directional Conversion of Pyrolysis Crude Oil to Liquid Fuel
Author
Qi, Wei; Luo, Zhongyang  VIAFID ORCID Logo  ; Qian, Qian; Shi, Jingkang; Miao, Feiting
First page
981
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3170974544
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.