Content area
Source number detection and Direction-of-Arrival (DOA) estimation are usually addressed in two stages, leading to high computational load. This paper proposes a simple solution to efficiently estimate the source number and DOAs using deep neural network (DNN) and clustering, named DNN-C. By observing that sources in space are usually few, DNN-C uses a simple fully connected DNN to obtain a spatial spectrum. Then, the K2-means clustering is specially designed to extract the source information from the obtained spatial spectrum. In particular, to enable the proposed DNN-C with the ability to detect the mixed sources, we first develop a new strategy for training data generation, and provide a guideline for data balance setting. We then explore the prior knowledge of array signal processing and spatial spectrum to obtain a peak vector and propose to add a virtual peak into the peak vector, and thus transform the task of source detection as a binary clustering problem of noise and sources. Overall, DNN-C provides a lightweight solution to implement source number detection and DOA estimation simultaneously and efficiently. Its testing time is about 2 times less than the classical solution (i.e., minimum descriptive length and multiple signal classification, shortened as MDL-MUSIC) when the grid step is 1° Importantly, it is robust to nonuniform noise by nature and can identify the absence of sources. The effectiveness of DNN-C is verified by simulation results. Furthermore, the DNN-C model trained by simulated data shows its generalization to real data measured by a circular array of eight sensors.
Details
; Zhou, Yuan 1 ; Li, Zi 1 ; Xie, Yuxuan 1 ; Cao Zeng 2
; Liu, Zhiling 3 1 Yangtze River Delta Research Institute and and School of Software, Northwestern Polytechnical University, Taicang 215400, China;
2 National Laboratory of Radar Signal Processing, School of Electronic Engineering, Xidian University, Xi’an 710072, China;
3 Nanjing Electronic Equipment Institute, Nanjing 210007, China;