Content area
Serial crystallography (SX) enables the determination of biologically relevant structures at room temperature while minimizing radiation damage. During SX experiments, the beam center on diffraction images can shift due to X-ray beam movements or detector displacement. Consequently, the geometry file for the beam center is optimized; however, the effects of deviations from the optimal position on data processing efficiency remain unclear. This study examines how changes in the beam center influence data quality by analyzing the indexing efficiency and structure refinement of lysozyme and glucose isomerase datasets, considering shifts in the beam center parameter. The results revealed that as the beam center deviated farther from its optimal position, the indexing efficiency declined, with the extent of the effect varying significantly across indexing algorithms. XDS and MOSFLM algorithms maintained high indexing efficiencies (>90%) for shifts of ≤4 pixels (688 μm) and ≤2 pixels (344 μm), respectively, compared to data processed at the optimized beam center. Conversely, the DirAx and XGANDALF algorithms exhibited indexing efficiencies below 90% for a two-pixel shift in the beam center. These findings enhance our understanding of how beam center shifts affect SX data processing and provide valuable insights for developing effective data processing strategies.
