Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to improve the room temperature yield strength of X and enhance its engineering applicability, a series of CoCr1.7NiYx (x = 0, 0.01, 0.02, 0.03, 0.04, and 0.1 at.%) medium-entropy alloys were synthesized to investigate the effect of Y addition on the microstructures and mechanical properties of the CoCr1.7Ni-based alloy. The X-ray diffraction results show that the alloys exhibit face-centered cubic (FCC) + body-centered cubic (BCC) + hexagonal close packing (HCP) triphasic structure when the Y is adopted, whereas the CoCr1.7Ni-based alloy has a FCC+BCC biphasic structure. The volume fraction of BCC and HCP phase increased with increasing Y content, which led to alloy grain refinement. As a result, the microhardness and strength of alloys were both enhanced. The addition of Y resulted in dispersion strengthening and solid solution strengthening of CoCr1.7Ni alloy, the appearance of HCP, and an increase in BCC, which improved the room temperature yield strength and hardness of CoCr1.7Ni alloy. In particular, for CoCr1.7NiY0.1 alloy, its microhardness and yield strength, respectively, increased by 98.18% and 260.59% as compared with those of CoCr1.7Ni alloy.

Details

Title
Effects of Y Additions on the Microstructure and Mechanical Properties of CoCr1.7Ni Medium-Entropy Alloys
Author
Zhou, Shaoshuai 1   VIAFID ORCID Logo  ; Shu, Xiaoyong 1 ; Hu, Linli 2 ; Yuan, Xunyu 1 ; Qiu, Panpan 1 ; Xu, Xiwen 1 

 Jiangxi Provincial Engineering Research Center for Surface Technology of Aeronautical Materials, Nanchang Hangkong University, Nanchang 330063, China[email protected] (X.Y.); [email protected] (P.Q.); [email protected] (X.X.) 
 School of Mechanical Engineering, Jiangxi Vocational College of Mechanical and Electrical Technology, Nanchang 330013, China; [email protected] 
First page
172
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171022665
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.