Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Amid rising global energy demand and worsening environmental pollution, there is an urgent need for efficient energy storage and conversion technologies. Oxygen electrocatalytic reactions, specifically the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are critical processes in these technologies. Low-dimensional carbon nanomaterials, including zero-dimensional carbon dots, one-dimensional carbon nanotubes, and two-dimensional graphene, demonstrate substantial potential in electrocatalysis due to their unique physical and chemical properties. On the one hand, these low-dimensional carbon materials feature distinct geometric structures that enable the customization of highly active sites for oxygen electrocatalysis. On the other hand, the sp2 hybridization present in these materials contributes to the existence of π electrons, which enhances conductivity and facilitates catalytic activity and stability. This article reviews recent advancements in the development of efficient catalysts for oxygen electrocatalysis based on low-dimensional carbon nanomaterials, focusing on their characteristics, synthesis methods, electrocatalytic performance, and applications in energy conversion devices. Additionally, we address the current challenges faced by these nanomaterials and outline future research directions to expedite their practical applications.

Details

Title
Advanced Low-Dimensional Carbon Nanomaterials for Oxygen Electrocatalysis
Author
Yan, Yue; Ying, Xin; Zhao, Qingshan  VIAFID ORCID Logo 
First page
254
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171110858
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.