Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the ever-increasing volume of maritime traffic, the risks of ship navigation are becoming more significant, making the use of advanced multi-source perception strategies and AI technologies indispensable for obtaining information about ship navigation status. In this paper, first, the ship tracking system was optimized using the Bi-YOLO network based on the C2f_BiFormer module and the OC-SORT algorithms. Second, to extract the visual trajectory of the target ship without a reference object, an absolute position estimation method based on binocular stereo vision attitude information was proposed. Then, a perception data fusion framework based on ship spatio-temporal trajectory features (ST-TF) was proposed to match GPS-based ship information with corresponding visual target information. Finally, AR technology was integrated to fuse multi-source perceptual information into the real-world navigation view. Experimental results demonstrate that the proposed method achieves a mAP0.5:0.95 of 79.6% under challenging scenarios such as low resolution, noise interference, and low-light conditions. Moreover, in the presence of the nonlinear motion of the own ship, the average relative position error of target ship visual measurements is maintained below 8%, achieving accurate absolute position estimation without reference objects. Compared to existing navigation assistance, the AR-based navigation assistance system, which utilizes ship ST-TF-based perception data fusion mechanism, enhances ship traffic situational awareness and provides reliable decision-making support to further ensure the safety of ship navigation.

Details

Title
Target Ship Recognition and Tracking with Data Fusion Based on Bi-YOLO and OC-SORT Algorithms for Enhancing Ship Navigation Assistance
Author
Chen, Shuai  VIAFID ORCID Logo  ; Gao, Miao; Shi, Peiru; Zeng, Xi; Zhang, Anmin
First page
366
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171121206
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.