Full Text

Turn on search term navigation

© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fused Deposition Modeling (FDM) is a prominent additive manufacturing technique known for its ability to provide cost-effective and fast printing solutions. FDM enables the production of computer-aided 3D designs as solid objects at macro scales with high-precision alignment while sacrificing excellent surface smoothness compared to other 3D printing techniques such as SLA (Stereolithography) and SLS (Selective Laser Sintering). Electro-Spinning (ES) is another technique for producing soft-structured nonwoven micro-scale materials, such as nanofibers. However, compared to the FDM technique, it has limited accuracy and sensitivity regarding high-precision alignment. The need for high-precision alignment of micro-scaled soft structures during the printing process raises the question of whether FDM and ES techniques can be combined. Today, the printing technique with such capability is called Melt Electro Writing (MEW), and in practice, it refers to the basic working principle on which bio-printers are based. This paper aims to examine how these two techniques can be combined affordably. Comparatively, it presents output production processes, design components, parameters, and materials used in output production. It discusses the limitations and advantages of such a hybrid platform, specifically from the perspective of engineering design and its biomedical applications.

Details

Title
Redesigning FDM Platforms for Bio-Printing Applications
Author
Turker, Burak
First page
226
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171134549
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.