It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Acinetobacter baumannii is a successful nosocomial pathogen, causing severe, life-threatening infections in hospitalized patients, including pneumonia and bloodstream infections. The spread of carbapenem-resistant Acinetobacter baumannii (CRAB) strains is a major health threat worldwide. The successful spread of CRAB is mostly due to its highly plastic genome. Although some virulence factors associated with CRAB have been uncovered, many mechanisms contributing to its success are not fully understood.
Methods
Here we describe strains of CRAB that were isolated from fulminant cases in 2 hospitals in Israel. These isolates show a rare hypermucoid (HM) phenotype and were investigated using phenotypic assays, comparative genomics, and an in vivo Galleria mellonella model.
Results
The 3 isolates belonged to the ST3 international clonal type and were closely related to each other, as shown by Fourier-transform infrared spectroscopy and phylogenetic analyses. These isolates possessed thickened capsules and a dense filamentous extracellular polysaccharides matrix as shown by transmission electron microscopy (TEM), and overexpressed the capsule polysaccharide synthesis pathway-related wzc gene.
Conclusions
The HM isolates possessed a unique combination of virulence genes involved in iron metabolism, protein secretion, adherence, and membrane glycosylation. HM strains were more virulent than control strains in 2 G. mellonella infection models. In conclusion, our findings demonstrated several virulence factors, all present in 3 CRAB isolates with rare hypermucoid phenotypes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel
2 National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
3 The B. Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel; Infectious Disease and Infection Control Unit, Carmel Medical Center, Haifa, Israel