Content area

Abstract

In the presented work, erbium fiber lasers operating in the pulsed mode with a nonlinear element containing a vanadium oxide saturable absorber are demonstrated. The structure of the saturable absorber is based on a segment of thinned silica fiber coated with a thin-film vanadium oxide by the method of metalorganic chemical vapor deposition. A fiber laser scheme is demonstrated that allows controlling the transmission of the internal cavity of the resonator during laser generation and deposition of a thin film. We have demonstrated a method for obtaining and annealing nanocoatings with laser generation control. We controlled the laser output parameters directly during the synthesis of the saturable absorber material. Vanadium oxides obtained in the work demonstrated the Mott–Paierls phase transition practically at room temperature. In this work, the optical characteristics of the output radiation of a fiber laser with a saturable absorber were measured. At temperatures above 70 °C, the coatings demonstrate a passive Q-switch with a repetition rate of 38 kHz and a pulse duration of 3.8 μs. At temperatures below the phase transition, a short-term mode-locking mode occurs. The transmission jump at a wavelength of about 1350 nm during structural rearrangement was 24%. For comparison, VO2 nanopowder in a polydimethylsiloxane elastomer matrix was used as a saturable absorber material. The nanopowder modulator made it possible to obtain pulses with a frequency of 27 kHz and a duration of about 7.2 μs.

Details

1009240
Company / organization
Title
In Situ Preparation of Thin-Film Q-Switches Based on Vanadium Dioxide for Pulsed Fiber Lasers
Author
Sudas, Dmitriy P 1 ; Popov, Sergei M 2   VIAFID ORCID Logo  ; Kuznetsov, Petr I 2 

 World-Class Research Center, Peter the Great St. Petersburg Polytechnical University, Polytechnicheskaya ul. 29, 195251 St. Petersburg, Russia; Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch, Sq. Vvedenskogo 1, Fryazino, 141190 Moscow, Russia; [email protected] (S.M.P.); [email protected] (P.I.K.) 
 Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch, Sq. Vvedenskogo 1, Fryazino, 141190 Moscow, Russia; [email protected] (S.M.P.); [email protected] (P.I.K.) 
Publication title
Photonics; Basel
Volume
12
Issue
2
First page
133
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-02-03
Milestone dates
2024-10-31 (Received); 2025-01-31 (Accepted)
Publication history
 
 
   First posting date
03 Feb 2025
ProQuest document ID
3171181410
Document URL
https://www.proquest.com/scholarly-journals/situ-preparation-thin-film-q-switches-based-on/docview/3171181410/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-26
Database
ProQuest One Academic