Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Laser micro-machining is a rapidly growing technique to create, manufacture and fabricate microstructures on different materials ranging from metals and ceramics to polymers. Micro- and nano-machining on different materials has been helpful and useful for various biomedical applications. This study focuses on the micro-machining of innovative barbed sutures using an ultrashort pulse laser, specifically a femtosecond (fs) laser system. Two bioresorbable polymeric materials, namely, catgut and poly (4-hydroxybutyrate) (P4HB), were studied and micro-machined using the femtosecond (fs) laser system. The optimized laser parameter was used to fabricate two different barb geometries, namely, straight and curved barbs. The mechanical properties were evaluated via tensile testing, and the anchoring performance was studied by means of a suture–tissue pull-out protocol using porcine dermis tissue which was harvested from the medial dorsal site. Along with the evaluation of the mechanical and anchoring properties, the thermal characteristics and degradation profiles were assessed and compared against mechanically cut barbed sutures using a flat blade. The mechanical properties of laser-fabricated barbed sutures were significantly improved when compared to the mechanical properties of the traditionally/mechanically cut barbed sutures, while there was not any significant difference in the anchoring properties of the barbed sutures fabricated through either of the fabrication techniques. Based on the differential scanning calorimetry (DSC) results for thermal transitions, there was no major impact on the inherent material properties due to the laser treatment. This was also observed in the degradation results, where both the mechanically cut and laser-fabricated barbed sutures exhibited similar profiles throughout the evaluation time period. It was concluded that switching the fabrication technique from mechanical cutting to laser fabrication would be beneficial in producing a more reproducible and consistent barb geometry with more precision and accuracy.

Details

Title
Ultrashort Pulse Laser Fabrication and Evaluation of Innovative Resorbable Barbed Sutures
Author
Karuna Nambi Gowri 1   VIAFID ORCID Logo  ; Walid Al Asad 2 ; Majumder, Shubha 2   VIAFID ORCID Logo  ; Zhao, Xin 2 ; King, Martin William 3   VIAFID ORCID Logo 

 Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA 
 Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA; [email protected] (W.A.A.); [email protected] (S.M.); [email protected] (X.Z.) 
 Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China 
First page
544
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171188120
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.