Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Monocular depth estimation (MDE) is a critical computer vision task that enhances environmental perception in fields such as autonomous driving and robot navigation. In recent years, deep learning-based MDE methods have achieved notable progress in these fields. However, achieving robust monocular depth estimation in low-altitude forest environments remains challenging, particularly in scenes with dense and cluttered foliage, which complicates applications in environmental monitoring, agriculture, and search and rescue operations. This paper presents a comprehensive evaluation of state-of-the-art deep learning-based MDE methods on low-altitude forest datasets. The evaluated models include both self-supervised and supervised approaches, employing different network structures such as convolutional neural networks (CNNs) and Vision Transformers (ViTs). We assessed the generalization of these approaches across diverse low-altitude scenarios, specifically focusing on forested environments. A systematic set of evaluation criteria is employed, comprising traditional image-based global statistical metrics as well as geometry-aware metrics, to provide a more comprehensive evaluation of depth estimation performance. The results indicate that most Transformer-based models, such as DepthAnything and Metric3D, outperform traditional CNN-based models in complex forest environments by capturing detailed tree structures and depth discontinuities. Conversely, CNN-based models like MiDas and Adabins struggle with handling depth discontinuities and complex occlusions, yielding less detailed predictions. On the Mid-Air dataset, the Transformer-based DepthAnything demonstrates a 54.2% improvement in RMSE for the global error metric compared to the CNN-based Adabins. On the LOBDM dataset, the CNN-based MiDas has the depth edge completeness error of 93.361, while the Transformer-based Metric3D demonstrates the significantly lower error of only 5.494. These findings highlight the potential of Transformer-based approaches for monocular depth estimation in low-altitude forest environments, with implications for high-throughput plant phenotyping, environmental monitoring, and other forest-specific applications.

Details

Title
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
Author
Jia, Jiwen 1 ; Kang, Junhua 1   VIAFID ORCID Logo  ; Chen, Lin 2 ; Gao, Xiang 1 ; Zhang, Borui 1 ; Yang, Guijun 3 

 College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; [email protected] (J.J.); [email protected] (X.G.); [email protected] (G.Y.) 
 VISCODA GmbH, Schneiderberg 32, D-30167 Hanover, Germany; [email protected] 
 College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; [email protected] (J.J.); [email protected] (X.G.); [email protected] (G.Y.); Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China 
First page
717
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171210647
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.