Content area

Abstract

In this paper, we address the problem of dynamic scheduling of a multipurpose batch process subject to two types of disturbances, namely, processing time variation and demand uncertainty. We propose a rescheduling strategy that combines several ideas. First, when we generate a new schedule, we simultaneously construct a Directed Acyclic Graph (DAG) to represent this new schedule. While each node in the DAG represents an operation, each arc represents the dependency of an operation on another. Based on this DAG, we then use a simple procedure to determine how long an operation is allowed to be delayed without affecting the current makespan. After that, when the new schedule is used for online execution, we trigger a rescheduling procedure only when (1) we infer from the predetermined delayable time information that the current makespan will be extended, or (2) we observe new demands, or (3) the current schedule is not guaranteed to be feasible. In the rescheduling procedure, only the affected operations are allowed to be revised, while those unaffected operations are fixed. By doing this, we can reduce system nervousness and improve computational efficiency. The computational results demonstrate that our method can achieve an order of magnitude of reduction in both the number of operation changes and the computational time with a slightly better long-term makespan, compared to the widely used periodically–completely rescheduling strategy.

Details

1009240
Title
A Rescheduling Strategy for Multipurpose Batch Processes with Processing Time Variation and Demand Uncertainty
Publication title
Processes; Basel
Volume
13
Issue
2
First page
312
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-01-23
Milestone dates
2024-11-11 (Received); 2025-01-16 (Accepted)
Publication history
 
 
   First posting date
23 Jan 2025
ProQuest document ID
3171221077
Document URL
https://www.proquest.com/scholarly-journals/rescheduling-strategy-multipurpose-batch/docview/3171221077/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-26
Database
ProQuest One Academic