Full text

Turn on search term navigation

© 2025 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study addresses the limitations of linear mapping in two-dimensional gimbal control for moving target tracking, which results in significant control errors and slow response times. To overcome these issues, we propose a nonlinear mapping control method that enhances the success rate of light source target tracking systems. Using Raspberry Pi 4B and OpenCV, the control system performs real-time recognition of rectangular frames and laser spot images. The tracking system, which includes an OpenMV H7 Plus camera, captures and processes the laser spot path. Both systems are connected to an STM32F407ZGT6 microcontroller to drive a 42-step stepper motor with precise control. By adjusting the parameter c of the nonlinear mapping curve, we optimize the system's performance, balancing the response speed and stability. Our results show a significant improvement in control accuracy, with a miss rate of 3.3%, an average error rate of 0.188% at 1.25 m, and a 100% success rate in target tracking. The proposed nonlinear mapping control method offers substantial advancements in real-time tracking and control systems, demonstrating its potential for broader application in intelligent control fields.

Details

Title
Optimizing success rate with Nonlinear Mapping Control in a high-performance raspberry Pi-based light source target tracking system
Author
Zhou, Guiyu; Zhang, Bo; Li, Qinghao; Zhao, Qin; Zhang, Shengyao  VIAFID ORCID Logo 
First page
e0319071
Section
Research Article
Publication year
2025
Publication date
Feb 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171259650
Copyright
© 2025 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.