Content area

Abstract

Somatosensory inputs are critical to motor control. Animal studies have shown that primary somatosensory lesions cause sensorimotor deficits along with disrupted organization in primary motor cortex (M1). How does damage in primary somatosensory cortex (S1) influence motor networks in humans? Using fMRI, we examined two individuals with extensive damage to left somatosensory cortex, but primarily intact motor cortex and preserved motor abilities. Given left S1 damage, tactile detection and localization were impaired for the contralesional hand in both individuals. When moving the contralesional hand, LS, with near complete damage to the S1 hand area, showed increased activation in ipsilesional putamen and deactivation in contralesional cerebellum relative to age-matched controls. These findings demonstrate influences of S1 damage to subcortical sensorimotor areas that are distant from the lesion site, and a potential reweighting of the motor network with increased action selection in putamen and inhibition of sensory prediction in cerebellum in the face of sensory loss. In contrast, RF, who had a small island of spared S1 in the hand area, showed greater activation in contralesional S1 for movement versus rest. This same region was also activated by pure somatosensory stimulation in a second experiment, suggesting that the spared S1 area in RF still subserves sensorimotor processing. Finally, the right middle occipital gyrus was more strongly activated in both individuals compared with controls, suggesting a potential reliance on visual imagery in the face of degraded sensory feedback.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

* https://osf.io/zr6hb

Details

1009240
Title
Reorganization of motor functions within visuomotor networks subsequent to somatosensory cortical damage
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 26, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3171518305
Document URL
https://www.proquest.com/working-papers/reorganization-motor-functions-within-visuomotor/docview/3171518305/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-27
Database
ProQuest One Academic