It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Genomic epidemiology is a core component in investigating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the efficacy of control strategies in South Korea was evaluated using genomic epidemiology based on viral genome sequences of 2,065 SARS-CoV-2 cases identified in South Korea from January 2020 to December 2020. Phylogenetic analysis revealed that the majority of viruses introduced from inbound travelers did not further spread throughout South Korea; however, four distinct subgroups (KR.1–4, belonging to B.1.497, B.1, K.1 and B.41) of viruses caused local epidemics. After the introduction of enhanced social distancing, the viral population size and daily case numbers decreased, and KR.2–4 subgroups were extinguished from South Korea. Nevertheless, there was a subsequent increase in KR.1 subgroups after the downgrading of social distancing level. These results indicate that the international traveler quarantine system implemented in South Korea along with social distancing measures efficiently reduced the introduction and spread of SARS-CoV-2, but it was not completely controlled. An improvement of control strategies will be required to better control SARS-CoV-2, its variants, and future pandemic viruses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Veterinary Medicine, Kyungpook National University , 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
2 Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency , 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
3 Department of Pathobiology and Veterinary Science, University of Connecticut , Storrs, CT 06269, USA
4 Division of High-Risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency , 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
5 Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency , 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
6 Division of Viral Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency , 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
7 Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency , 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea