Abstract
Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian Flyway, East Asian/East African Flyway, and Black Sea/Mediterranean Flyway. For six consecutive years (2010–6), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found substantial subtype diversity of viruses that varied in prevalence from year to year. Low pathogenic (LP)AIV subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, plus two H5N5 and H5N8 highly pathogenic (HP)AIVs belonging to clade 2.3.4.4. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences for LPAIVs among different host species in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide diversity. Hemagglutinin clade 2.3.4.4 H5N8 viruses, circulated in Eurasia during 2014–5 did not reassort, but analysis after its subsequent dissemination during 2016–7 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions with maintenance of local AIV viruses in Georgia, whereas other lineages showed considerable genetic inter-relationship with viruses circulating in other parts of Eurasia and Africa, despite relative under-sampling in the area.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
2 Department of Viroscience, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
3 National Centre for Disease Control, Tbilisi, Georgia
4 Institute of Ecology, Ilia State University, 3/5 Cholokashvili, Tbilisi, Georgia
5 J. Craig Venter Institute, Rockville, MD, USA
6 Icahn School of Medicine at Mount Sinai, New York, NY, USA
7 Animal and Plant Health Agency-Weybridge, UK
8 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; Animal and Plant Health Agency-Weybridge, UK





