Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a low-voltage, low-power voltage-to-current converter (V-I Converter) implemented in TSMC 40 nm CMOS technology. Operating at a supply voltage of 0.45 V with an input range of 0.1 V to 0.3 V, the proposed circuit achieves a temperature coefficient of 54.68 ppm/°C, which is at least 2× better than prior works, ensuring stable performance across a wide temperature range (−20 °C to 80 °C). The design employs a three-stage operational transconductance amplifier (OTA) with a Q-reduction frequency compensation technique to produce programmable output currents while maintaining a power dissipation of less than 2.76 μW. With a bandwidth of 34.45 kHz and a total harmonic distortion (THD) of −56.66 dB at 1 kHz and 0.1 VPP input signal, the circuit demonstrates high linearity and low power consumption under ultra-low voltage design scenarios. These features make the proposed V-I Converter highly suitable for energy-constrained applications such as biomedical sensors, energy harvesting systems, and IoT nodes, where low power consumption and temperature stability are critical parameters.

Details

Title
A Low-Voltage Low-Power Voltage-to-Current Converter with Low Temperature Coefficient Design Awareness
Author
Chen, Haoze  VIAFID ORCID Logo  ; Chan, Pak Kwong  VIAFID ORCID Logo 
First page
1204
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171214869
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.