You shouldn't see this
Skip to main content
ProQuest

Select language

  • العربية
  • Bahasa Indonesia
  • Čeština
  • Deutsch
  • Español
  • Français
  • 한국어
  • Italiano
  • Magyar
  • 日本語
  • Norsk
  • Polski
  • Português (Brasil)
  • Português (Portugal)
  • Русский
  • ไทย
  • Türkçe
  • 中文(简体)‎
  • 中文(繁體)‎
    • Full Text
    • Scholarly Journal
    • More like this

    Exploring the future of privacy-preserving heart disease prediction: a fully homomorphic encryption-driven logistic regression approach

    Journal of Big Data
    ; Heidelberg Vol. 12, Iss. 1,  (Feb 2025): 52.
    DOI:10.1186/s40537-025-01098-6
    Springer Nature B.V. Publisher logo.
    PDFDownload PDF CiteCite
    Copy URL
    https://www.proquest.com/scholarly-journals/exploring-future-privacy-preserving-heart-disease/docview/3171983860/se-2
    PrintAll Options

    No items selected

    Please select one or more items.

    Close

    Select results items first to use the cite, email, save, and export options

    Document Section options

    • Abstract/Details
    • 36References
    • 3Cited on ProQuest
    • 4Cited on Web of Science 
    • 147With shared references
    • More

      It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader




      Back to top
      ProQuest, part of Clarivate
      • About ProQuest
      • Contact Us
      • Terms and Conditions
      • Privacy Policy
      • Cookie Policy
      • Accessibility
      Copyright © 2026 ProQuest LLC.
      GwTYafOzdLzGIu3ABGbCnw==:JRjGUavjVAPQ5HC0PfU1iHuFMmPy6/if3K6YyHIIxcJChPpoHY3i1QBUeRucno687AC7VX+4AZtDW4iWehMsSXC0d/DzZVy2kR3VzZ0aOPpImIA6bmxNWJWIEIIplAiRS4h9N8cyentpU97novPHXZxCnrFL2q1fFa6RoQrs3Ly8bI8vA5Apihh573GqxEcBXhYk7ChRIHA+TqYD64yyElBJp5a60kbKMoqI211rEjjWOs+jb4MBjkiOj2vN5Rx/y3aeTMHi/Pew7Ij/kz1XAiNqsaXLP93Gn6Rg1+qqQPUW8FX/WqNrCfOerJeE0J7rHo3SpZWPjVQh8lvfypBBsPEYxkHrUHW6E0FZzj6O3Tdtp0kaika1NGHWU/x60T5LDJX99Uj0QLaOFtGWcWpiSg==