Abstract

Background

Primary osteoblasts are essential for bone formation and regeneration, making them pivotal in dental applications, including periodontal regeneration, ridge augmentation, and implant osseointegration. Sourced from various tissues like alveolar bone, calvarial bone, mandibular and maxillary bones, long bones, and bone marrow-derived stem cells (BMSCs), each type of osteoblast presents unique advantages and limitations related to yield, accessibility, and clinical relevance. Given these variables, selecting an appropriate source is crucial for experimental consistency and translational application in dentistry.

Methods

This review synthesizes data from in vitro, animal, and clinical studies to provide a comprehensive overview of osteoblast sourcing, isolation, and characterization in dental research. Sources were reviewed based on yield, anatomical relevance, and accessibility, while isolation methods were compared to assess their impact on cell behavior and phenotype retention. The review evaluates methods such as enzymatic digestion, explant culture, and differentiation of BMSCs, alongside characterization techniques like morphological analysis, gene expression profiling, and mineralization assays.

Results

The analysis shows that alveolar bone-derived osteoblasts offer high clinical relevance due to their anatomical similarity to oral structures but are limited by low yield and invasive collection. Calvarial and long bone osteoblasts provide higher yields, making them useful for material testing, though they lack biomechanical compatibility with oral environments. BMSCs offer a renewable source with significant regenerative potential but require precise differentiation protocols. In vitro studies contribute mechanistic insights, while animal models bridge the gap to clinical application, despite challenges in standardization and interspecies variability.

Conclusion

This review highlights the importance of selecting appropriate osteoblast sources and methods for dental research to optimize outcomes in periodontal and implant-related therapies. The variability across study designs and experimental outcomes underscores the need for standardized protocols and targeted systematic reviews within specific research settings. These findings offer a framework for future osteoblast-based research and guide the effective translation of osteoblast therapies into clinical dental practice.

Details

Title
Advancements in osteoblast sourcing, isolation, and characterization for dental tissue regeneration: a review
Author
Venkataiah, Venkata Suresh; Mehta, Deepak; Fareed, Mohammad; Karobari, Mohmed Isaqali
Pages
1-11
Section
Review
Publication year
2025
Publication date
2025
Publisher
BioMed Central
e-ISSN
1475925X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3175403145
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.