Content area

Abstract

Several approaches have been introduced to manage congestion in transmission lines while simultaneously reducing the generation cost of power systems. Two of these approaches, namely, generation rescheduling and transmission switching are used together in this article. Changing the system topology through optimal transmission switching (OTS) is an important and active research area in power systems for this purpose. Essentially, OTS is a mixed-integer nonlinear programming (MINLP) problem that is inherently nonlinear and nonconvex. Therefore, solving this nonlinear problem poses significant challenges for researchers. On one hand, there is no guarantee of reaching a global optimal solution, and on the other hand, issues such as the lack of convergence and increased solution time have made it difficult to solve the OTS problem. Linearizing the OTS problem provides a guaranteed method for reaching a comprehensive optimal solution. This study presents a new linear mathematical model for the OTS problem. The proposed model is solved using mixed-integer linear programming (MILP), which accurately determines the opening or closing status of transmission lines and the number of lines that should be opened to reduce the generation and congestion costs in the network. To this aim, a linear programming and piecewise approximation, along with Taylor’s series approximation method, is used to linearize the generation cost function, and AC optimal power flow equations. To reduce the solution time of the OTS problem without losing accuracy, a congestion cost index is used based on decreasing the total congestion cost of transmission lines, as well as the production cost of generators. The proposed model is implemented on IEEE 9-bus and IEEE 118-bus standard test systems. Also, in order to analyze the reliability of the system before and after switching, two methods of contingency analysis and calculation of the LOLP index have been used. The obtained results show that transmission switching can reduce the generation cost and the total power system congestion cost as well.

Details

Business indexing term
Title
Optimal Transmission Switching for Congestion Management and Cost Reduction Using Linearized AC Optimal Power Flow
Author
Habibi, Mohammad 1   VIAFID ORCID Logo  ; Zangeneh, Ali 2   VIAFID ORCID Logo 

 Electrical Engineering Department Shahid Rajaee Teacher Training University Tehran Iran 
 Electrical Engineering Department Shahid Rajaee Teacher Training University Tehran Iran; Electrical and Computer Engineering Department Kharazmi University Tehran Iran 
Editor
Johny Renoald A
Volume
2025
Publication year
2025
Publication date
2025
Publisher
John Wiley & Sons, Inc.
Place of publication
Hoboken
Country of publication
United States
Publication subject
e-ISSN
20507038
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-04-12 (Received); 2024-12-19 (Revised); 2025-01-22 (Accepted); 2025-02-25 (Pub)
ProQuest document ID
3175451604
Document URL
https://www.proquest.com/scholarly-journals/optimal-transmission-switching-congestion/docview/3175451604/se-2?accountid=208611
Copyright
Copyright © 2025 Mohammad Habibi and Ali Zangeneh. International Transactions on Electrical Energy Systems published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Last updated
2025-07-20
Database
ProQuest One Academic