Content area

Abstract

This paper presents a numerical sketch-based methodology to achieve optimal product design solutions, bridging the gap between initial conceptual sketches and advanced engineering analyses. The proposed approach enables the transformation of simple hand-drawn sketches into digital models suitable for complex computational simulations and design optimization. Using computer vision algorithms, sketches are processed to generate digital design components that serve as inputs for Finite Element Analysis (FEA). In order to further enhance the overall design process, topology optimization (TO) is also performed, iteratively refining the geometry to achieve optimal material distribution for improved structural performance. Additionally, Adaptive Mesh Refinement (AMR) techniques are applied to ensure computational efficiency and accuracy by dynamically refining the mesh in regions of high complexity or stress concentration. The synergy of sketch-based modeling, FEA, TO, and AMR demonstrates significant potential in reducing design cycles while maintaining high-performance standards. Finally, it should be noted that the proposed pipeline consists of a fully automated procedure, hence it could reduce the learning curve for the designers, enabling companies to onboard employees faster and integrate advanced design techniques into their workflows without extensive training. The above-mentioned modules render the introduced approach particularly suitable for applications in product design development that can be utilized in several industries like mechanical, manufacturing, and furniture.

Details

1009240
Title
A Computational Sketch-Based Approach Towards Optimal Product Design Solutions
Publication title
Volume
15
Issue
5
First page
2413
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-02-24
Milestone dates
2025-02-03 (Received); 2025-02-21 (Accepted)
Publication history
 
 
   First posting date
24 Feb 2025
ProQuest document ID
3176306262
Document URL
https://www.proquest.com/scholarly-journals/computational-sketch-based-approach-towards/docview/3176306262/se-2?accountid=208611
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-07-24
Database
ProQuest One Academic