Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a novel multivariate mean-reverting jump-diffusion model that incorporates correlated jumps and seasonal effects to capture the complex dynamics of commodity prices. The model also accounts for the interplay between price volatility and convenience yield, offering a comprehensive framework for commodity futures pricing. By leveraging the Feynman–Kac theorem, we derive a partial integro-differential equation for the conditional moment generating function of the log price, enabling an analytical solution for pricing commodity futures. This solution is validated against Monte Carlo simulations, demonstrating high accuracy and computational efficiency. The model is empirically applied to historical futures prices of natural rubber from the Thailand Futures Exchange. Key parameters—including commodity price dynamics, convenience yields, and seasonal factors—are estimated, revealing the critical role of jumps and seasonality in influencing market behavior. Notably, our findings show that convenience yields are negative, reflecting higher inventory costs, and tend to increase with rising spot prices. These results provide actionable insights for traders, risk managers, and policymakers in commodity markets, emphasizing the importance of correlated jumps and seasonal patterns in pricing and risk assessment.

Details

Title
Analytical Pricing of Commodity Futures with Correlated Jumps and Seasonal Effects: An Empirical Study of Thailand’s Natural Rubber Market
Author
Sutchada, Athinan 1   VIAFID ORCID Logo  ; Rujivan, Sanae 1 ; Djehiche, Boualem 2 

 Research Center for Data Science for Health Study, Division of Mathematics and Statistics, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand; [email protected] 
 Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; [email protected] 
First page
770
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176338375
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.