Full text

Turn on search term navigation

© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The article presents basic information about the induction heating of gears, which are widely used in various industries. This article presents the methodology and results of a coupled FEM simulation of a circuit model for a power electronics converter connected to an inductor-charged heating system. The induction heating of gears was performed using a high-frequency inverter with SiC MOSFET transistors. A prototype inverter was built using a full-bridge structure with a series-parallel resonant circuit. The operating frequency was 350 kHz, the output power of the inverter was 3.5 kW, and the drain efficiency was equal to 96%. Coupled simulation was performed for a charge in the form of a gear made of 42CrMo4 steel (material parameters are provided in the article) for two types of heating: with and without a magnetic field concentrator. In addition, the article presents the results of co-simulation studies in the following form: a distribution of magnetic induction in the gear, energy density in the gear, the characteristics of energy density in a single tooth on the 8 mm length and the temperature of the tooth tip for two types of induction heating.

Details

Title
Analysis and Research on the Influence of a Magnetic Field Concentrator on the Gear Heating Process Using a High-Frequency Resonant Inverter
Author
Legutko, Piotr  VIAFID ORCID Logo 
First page
1096
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176361046
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.