Content area

Abstract

Graphs are an effective data structure for characterizing ubiquitous connections as well as evolving behaviors that emerge in inter-wined systems. Limited by the stereotype of node-to-node connections, learning node representations is often confined in a graph diffusion process where local information has been excessively aggregated, as the random walk of graph neural networks (GNN) explores far-reaching neighborhoods layer-by-layer. In this regard, tremendous efforts have been made to alleviate feature over-smoothing issues such that current backbones can lend themselves to be used in a deep network architecture. However, compared to designing a new GNN, less attention has been paid to underlying topology by graph re-wiring, which mitigates not only flaws of the random walk but also the over-smoothing risk incurred by reducing unnecessary diffusion in deep layers. Inspired by the notion of non-local mean techniques in the area of image processing, we propose a non-local information exchange mechanism by establishing an express connection to the distant node, instead of propagating information along the (possibly very long) original pathway node-after-node. Since the process of seeking express connections throughout a graph can be computationally expensive in real-world applications, we propose a re-wiring framework (coined the express messenger wrapper) to progressively incorporate express links in a non-local manner, which allows us to capture multi-scale features without using a very deep model; our approach is thus free of the over-smoothing challenge. We integrate our express messenger wrapper with existing GNN backbones (either using graph convolution or tokenized transformer) and achieve a new record on the Roman-empire dataset as well as in terms of SOTA performance on both homophilous and heterophilous datasets.

Details

1009240
Title
Efficient Graph Representation Learning by Non-Local Information Exchange
Publication title
Volume
14
Issue
5
First page
1047
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-06
Milestone dates
2025-02-04 (Received); 2025-03-02 (Accepted)
Publication history
 
 
   First posting date
06 Mar 2025
ProQuest document ID
3176377279
Document URL
https://www.proquest.com/scholarly-journals/efficient-graph-representation-learning-non-local/docview/3176377279/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-12
Database
ProQuest One Academic