Content area
Graphs are an effective data structure for characterizing ubiquitous connections as well as evolving behaviors that emerge in inter-wined systems. Limited by the stereotype of node-to-node connections, learning node representations is often confined in a graph diffusion process where local information has been excessively aggregated, as the random walk of graph neural networks (GNN) explores far-reaching neighborhoods layer-by-layer. In this regard, tremendous efforts have been made to alleviate feature over-smoothing issues such that current backbones can lend themselves to be used in a deep network architecture. However, compared to designing a new GNN, less attention has been paid to underlying topology by graph re-wiring, which mitigates not only flaws of the random walk but also the over-smoothing risk incurred by reducing unnecessary diffusion in deep layers. Inspired by the notion of non-local mean techniques in the area of image processing, we propose a non-local information exchange mechanism by establishing an express connection to the distant node, instead of propagating information along the (possibly very long) original pathway node-after-node. Since the process of seeking express connections throughout a graph can be computationally expensive in real-world applications, we propose a re-wiring framework (coined the express messenger wrapper) to progressively incorporate express links in a non-local manner, which allows us to capture multi-scale features without using a very deep model; our approach is thus free of the over-smoothing challenge. We integrate our express messenger wrapper with existing GNN backbones (either using graph convolution or tokenized transformer) and achieve a new record on the Roman-empire dataset as well as in terms of SOTA performance on both homophilous and heterophilous datasets.
