Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the rapidly evolving field of computer vision and machine learning, 3D skeleton estimation is critical for applications such as motion analysis and human–computer interaction. While stereo cameras are commonly used to acquire 3D skeletal data, monocular RGB systems attract attention due to benefits including cost-effectiveness and simple deployment. However, persistent challenges remain in accurately inferring depth from 2D images and reconstructing 3D structures using monocular approaches. The current 2D to 3D skeleton estimation methods overly rely on deep training of datasets, while neglecting the importance of human intrinsic structure and the principles of camera imaging. To address this, this paper introduces an innovative 2D to 3D gait skeleton estimation method that leverages the Brown camera distortion model and constrained optimization. Utilizing the Azure Kinect depth camera for capturing gait video, the Azure Kinect Body Tracking SDK was employed to effectively extract 2D and 3D joint positions. The camera’s distortion properties were analyzed, using the Brown camera distortion model which is suitable for this scenario, and iterative methods to compensate the distortion of 2D skeleton joints. By integrating the geometric constraints of the human skeleton, an optimization algorithm was analyzed to achieve precise 3D joint estimations. Finally, the framework was validated through comparisons between the estimated 3D joint coordinates and corresponding measurements captured by depth sensors. Experimental evaluations confirmed that this training-free approach achieved superior precision and stability compared to conventional methods.

Details

Title
2D to 3D Human Skeleton Estimation Based on the Brown Camera Distortion Model and Constrained Optimization
Author
Ma, Lan; Huo, Hua  VIAFID ORCID Logo 
First page
960
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176377846
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.