Content area

Abstract

Recent advances in autonomous driving have led to an increased use of LiDAR (Light Detection and Ranging) sensors for high-frequency 3D perceptions, resulting in massive data volumes that challenge in-vehicle networks, storage systems, and cloud-edge communications. To address this issue, we propose a bounded-error LiDAR compression framework that enforces a user-defined maximum coordinate deviation (e.g., 2 cm) in the real-world space. Our method combines multiple compression strategies in both axis-wise metric Axis or Euclidean metric L2 (namely, Error-Bounded Huffman Coding (EB-HC), Error-Bounded 3D Compression (EB-3D), and the extended Error-Bounded Huffman Coding with 3D Integration (EB-HC-3D)) with a lossless Huffman coding baseline. By quantizing and grouping point coordinates based on a strict threshold (either axis-wise or Euclidean), our method significantly reduces data size while preserving the geometric fidelity. Experiments on the KITTI dataset demonstrate that, under a 2 cm bounded-error, our single-bin compression reduces the data to 25–35% of their original size, while multi-bin processing can further compress the data to 15–25% of their original volume. An analysis of compression ratios, error metrics, and encoding/decoding speeds shows that our method achieves a substantial data reduction while keeping reconstruction errors within the specified limit. Moreover, runtime profiling indicates that our method is well-suited for deployment on in-vehicle edge devices, thereby enabling scalable cloud-edge cooperation.

Details

1009240
Title
Bounded-Error LiDAR Compression for Bandwidth-Efficient Cloud-Edge In-Vehicle Data Transmission
Publication title
Volume
14
Issue
5
First page
908
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-02-25
Milestone dates
2025-02-02 (Received); 2025-02-24 (Accepted)
Publication history
 
 
   First posting date
25 Feb 2025
ProQuest document ID
3176377926
Document URL
https://www.proquest.com/scholarly-journals/bounded-error-lidar-compression-bandwidth/docview/3176377926/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-12
Database
ProQuest One Academic