Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper investigates a multi-antenna, multi-input multi-output (MIMO) dual-functional radar and communication (DFRC) system platform. The system simultaneously detects radar targets and communicates with downlink cellular users. However, the modulated information within the transmitted waveforms may be susceptible to eavesdropping. To ensure the security of information transmission, we introduce non-orthogonal multiple access (NOMA) technology to enhance the security performance of the MIMO-DFRC platform. Initially, we consider a scenario where the channel state information (CSI) of the radar target (eavesdropper) is perfectly known. Using fractional programming (FP) and semidefinite relaxation (SDR) techniques, we maximize the system’s total secrecy rate under the requirements for radar detection performance, communication rate, and system energy, thereby ensuring the security of the system. In the case where the CSI of the radar target (eavesdropper) is unavailable, we propose a robust secure beamforming optimization model. The channel model is represented as a bounded uncertainty set, and by jointly applying first-order Taylor expansion and the S-procedure, we transform the original problem into a tractable one characterized by linear matrix inequalities (LMIs). Numerical results validate the effectiveness and robustness of the proposed approach.

Details

Title
Optimization of Robust and Secure Transmit Beamforming for Dual-Functional MIMO Radar and Communication Systems
Author
Chen, Zhuochen; Li, Ximin; Zhu, Shengqi
First page
816
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176388770
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.