Full Text

Turn on search term navigation

© 2025 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To achieve rural revitalization and enhance the development of rural tourism, this study employs a back propagation neural network (BPNN) to construct a rural revitalization development model. Additionally, the Grey Relation Analysis (GRA) algorithm is used to classify rural revitalization efforts across different cities. Consistency testing is applied to analyze rural revitalization indicators, and a tourism service evaluation model is established to assess rural revitalization tourism services from the perspective of smart cities. The research results indicate that: (1) the training results and expected values of the ten cities are relatively consistent, and the classification of rural revitalization development is good; (2) The five major indicators of tourism information services, tourism security services, tourism transportation services, tourism environment services, and tourism management services all meet the consistency test, and the consistency test results are all less than 0.1, confirming the reliability and effectiveness of the research data; (3) The tourism information and management services are mainly evaluated at level C, accounting for 62% and 62.5% respectively. The tourism transportation and safety services are mainly evaluated at level D, and the model can indicate the level of rural revitalization tourism service; (4) Compared with other algorithms, the GRA-BPNN algorithm performs the best in rural revitalization evaluation, with an accuracy of 92.3%, precision of 91.8%, recall rate of 93.7%, and F1 score of 92.7%. This study optimizes the rural revitalization tourism service platform, enhances the quality of rural tourism, promotes the development of the rural tourism industry, and contributes to the realization of rural revitalization.

Details

Title
The analysis of rural revitalization serviceplatform in smart city under back propagation neural network
Author
Jiang, Gongyi; Gao, Weijun; Xu, Meng  VIAFID ORCID Logo  ; Tong, Mingjia
First page
e0317702
Section
Research Article
Publication year
2025
Publication date
Mar 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3178693572
Copyright
© 2025 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.