It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Microbially induced carbonate precipitation (MICP), or biocementation, consists in using microorganisms living in the soil to produce calcium carbonate (biocement). This mineral bonds the grains and therefore improves the soil hydro-mechanical properties. When using this technique, one of the challenges is to ensure homogeneous treatment in the entire volume. In this study, an experimental device was developed to apply this treatment in cylindrical soil samples with 7.2 cm diameter and 12 cm height. Two distinct sample preparation techniques were tested: (i) pre-mixing the soil with bacteria, and then inject the feeding solution; (ii) inject bacteria followed by injecting the feeding solution. In both, the injection conditions varied in two distinct ways: (i) infiltration column, from the top and (ii) injecting through a perforated central tube. The homogeneity of the biocement in the volume was evaluated using X-ray and SEM images from small samples taken from different locations in the specimens and analysing different parameters. Mercury intrusion porosimetry (MIP) and CaCO3 dissolution tests revealed uneven distribution of CaCO3 content between the top and bottom sections, as well as along radial direction. The most homogeneous samples were found when bacteria were premixed with the soil before injecting the feeding solution. Unconfined compression tests (UCS) were also performed in samples with and without treatment. The treatment increased stiffness and strength significantly and soil rupture occurred mostly near the bottom, where the lowest CaCO3 contents were detected.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer