It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The commitment to cut CO2 emissions is now becoming a matter of legal obligations in several countries worldwide and the construction industry, one of the main sectors contributing to carbon emissions, is required to develop new approaches for carbon-efficient design. A study was undertaken to examine whether the inclusion of negative pore-water pressures (or ‘suction’) in the design of a flood embankment could reduce the embodied carbon associate with the construction of a new embankment or the retrofitting of an existing one. The case considered here are the embankments of the tidal Elbe area in Germany that require to be raised because of the new projection of extreme river levels due to climate change. Simple uncoupled water flow and stability analyses were considered to examine the performance of given embankment geometry. The purpose of the study is to examine whether incorporating suction into the design could allow for steeper landside slopes of the flood embankment. This would allow raising the embankment by saving considerable material and, hence, reducing the embodied carbon. At the same time, this would reduce the footprint of the raised embankment, which is a design requirement when flood embankments are embedded in the built environment as it happens in Hamburg.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer