Content area

Abstract

Accurate air temperature prediction is critical, particularly for micro air temperatures. The temperature of micro air changes quickly. Micro and macro air temperatures vary, particularly in degraded wetlands. By predicting air temperature, climate change in a degraded wetland environment can be predicted earlier. Furthermore, micro and macro air temperatures are drought index parameters. Knowing the drought index can help you avoid disasters like fires and floods. However, the right indicators for predicting micro or macro temperatures have yet to be found. LSTM excels at tasks requiring complex long-term memory, whereas GRU excels at tasks requiring rapid processing. We proposed a deep learning strategy based on the GRU-LSTM Hybrid model. Both of these deep learning models are excellent for predicting time series. The performance of this hybrid model is affected by changes in model indicators. The preprocessing stage, the number of input parameters, and the presence or absence of a Dropout Layer in the model architecture are among the most influential indicators of model performance. The best macro temperature prediction performance was obtained using 12 monthly average data to predict the next month’s temperature, yielding an RMSE of 0.056807, MAE of 0.046592, and R2 of 0.989371. This model also performed well in predicting daily micro temperature, with an RMSE of 0.227086, MAE of 0.190801, and R2 of 0.981802.

Details

1009240
Title
Optimizing the GRU-LSTM Hybrid Model for Air Temperature Prediction in Degraded Wetlands and Climate Change Implications
Author
Volume
16
Issue
2
Publication year
2025
Publication date
2025
Publisher
Science and Information (SAI) Organization Limited
Place of publication
West Yorkshire
Country of publication
United Kingdom
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3180200410
Document URL
https://www.proquest.com/scholarly-journals/optimizing-gru-lstm-hybrid-model-air-temperature/docview/3180200410/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-26
Database
3 databases
  • Coronavirus Research Database
  • ProQuest One Academic
  • ProQuest One Academic