Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Myrtle oil extracted from the spent berries of myrtle liqueur production, using 2-methyltetrahydrofuran, was used to increase the oxidative stability of sunflower oil (SFO). Three blending ratios (5%, 10%, and 15% w/w) and the SFO without any addition were subjected to forced aging conditions at 70 °C for 21 days. The changes in peroxide value (PV), p-anisidine value (AV), total oxidation value (totox), and conjugated dienes and trienes were evaluated during forced aging. The oxidative stability of the blends was also assessed by the spin trapping method coupled with Electron Paramagnetic Resonance spectroscopy. Myrtle oil at 5% provided the best results, increasing the oxidative stability of SFO by reducing the PV and slowing the onset of secondary oxidation products, as measured by the AV and conjugated trienes. The 15% blend, despite its high levels of PV, AV, conjugated dienes, and trienes during storage, protects SFO from oxidation. The blends of SFO with unconventional oils, like myrtle oil, could represent a sustainable approach to increase its oxidative stability during storage.

Details

Title
Oxidative Stability of Sunflower Oil: Effect of Blending with an Oil Extracted from Myrtle Liqueur By-Product
Author
Sanna, Daniele 1   VIAFID ORCID Logo  ; Fadda, Angela 2   VIAFID ORCID Logo 

 Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy 
 Institute of the Sciences of the Food Productions, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy 
First page
300
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181350160
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.