Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this research, a multi-channel target speech enhancement scheme is proposed that is based on deep learning (DL) architecture and assisted by multi-source tracking using a labeled random finite set (RFS) framework. A neural network based on minimum variance distortionless response (MVDR) beamformer is considered as the beamformer of choice, where a residual dense convolutional graph-U-Net is applied in a generative adversarial network (GAN) setting to model the beamformer for target speech enhancement under reverberant conditions involving multiple moving speech sources. The input dataset for this neural architecture is constructed by applying multi-source tracking using multi-sensor generalized labeled multi-Bernoulli (MS-GLMB) filtering, which belongs to the labeled RFS framework, to obtain estimations of the sources’ positions and the associated labels (corresponding to each source) at each time frame with high accuracy under the effect of undesirable factors like reverberation and background noise. The tracked sources’ positions and associated labels help to correctly discriminate the target source from the interferers across all time frames and generate time–frequency (T-F) masks corresponding to the target source from the output of a time-varying, minimum variance distortionless response (MVDR) beamformer. These T-F masks constitute the target label set used to train the proposed deep neural architecture to perform target speech enhancement. The exploitation of MS-GLMB filtering and a time-varying MVDR beamformer help in providing the spatial information of the sources, in addition to the spectral information, within the neural speech enhancement framework during the training phase. Moreover, the application of the GAN framework takes advantage of adversarial optimization as an alternative to maximum likelihood (ML)-based frameworks, which further boosts the performance of target speech enhancement under reverberant conditions. The computer simulations demonstrate that the proposed approach leads to better target speech enhancement performance compared with existing state-of-the-art DL-based methodologies which do not incorporate the labeled RFS-based approach, something which is evident from the 75% ESTOI and PESQ of 2.70 achieved by the proposed approach as compared with the 46.74% ESTOI and PESQ of 1.84 achieved by Mask-MVDR with self-attention mechanism at a reverberation time (RT60) of 550 ms.

Details

Title
Multi-Channel Speech Enhancement Using Labelled Random Finite Sets and a Neural Beamformer in Cocktail Party Scenario
Author
Datta, Jayanta 1   VIAFID ORCID Logo  ; Ali Dehghan Firoozabadi 2   VIAFID ORCID Logo  ; Zabala-Blanco, David 3   VIAFID ORCID Logo  ; Castillo-Soria, Francisco R 4   VIAFID ORCID Logo 

 Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile 
 Department of Electricity, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago 7800002, Chile 
 Department of Computing and Industries, Universidad Católica del Maule, Talca 3466706, Chile; [email protected] 
 Faculty of Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, Mexico; [email protected] 
First page
2944
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181408407
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.