Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Condition monitoring systems are widely used in gearboxes. Gears are one of the most crucial components for power transmission. Hence, the optimal sensor positions for condition monitoring of gears should be investigated to maximize reliability and to minimize costs. This work aims to analyze measured signals from rotating sensors at gears and compare them to signals from housing sensors to find the suitable positions for condition monitoring of the gears. Additionally, the rotational speed and external torque influences on the signal quality have been investigated. These are compared with a simulation model, which considers the vibration excitation from the gear mesh and bearings. The results show that the rotational speed affects the amplitude of the excitation. On this basis, we also investigate the amplitudes of the excitation frequencies of interest. The ratio of the amplitudes of these frequencies related to the mean values of the measurement signals is called the peak-to-mean ratio (PMR), and this PMR corresponds to the speed which is of interest for automatic fault detection in the gearboxes. Additionally, the simulation results show that the intensity of the vibration with the gear mesh frequency hardly reduces during transmission through the tapered roller bearings.

Details

Title
Simulative and Experimental Investigation of Vibration Transfer Path at Gearboxes
Author
Knoll, Erich  VIAFID ORCID Logo  ; Chen, Chaokai; Otto, Michael  VIAFID ORCID Logo  ; Stahl, Karsten  VIAFID ORCID Logo 
First page
3109
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181416243
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.