Content area

Abstract

Fluidized bed-chemical vapor deposition (FB-CVD) technology stands as a cross-cutting achievement of fluidized bed technology in chemical engineering and chemical vapor deposition (CVD) in materials science, finding applications in particle coating, granulation, and material preparation. As compared to conventional CVD technology, FB-CVD distinguishes itself through enhanced heat/mass transfer efficiency, achieving a uniform coating layer while maintaining low production costs. Given the related research on FB-CVD micro-nano particle coating, the mechanism of particle fluidization and chemical vapor deposition, and the difficulty of micro-nano particle agglomeration were summarized. The process intensification of micro-nano particle fluidization assisted by particle design and external force field, such as vibration field, magnetic field, and sound field, and micro-nano particle chemical vapor deposition coating were summarized. In particular, applications of FB-CVD micro-nano particle coating are introduced. Finally, the opportunities and challenges faced by FB-CVD micro-nano particle coating technology are discussed, and the development prospect of this technology is prospected. This review is beneficial for the researchers of the fluidization field, and also the particle coating technology.

Details

1009240
Title
The Fluidized Bed-Chemical Vapor Deposition Coating Technology of Micro-Nano Particles: Status and Prospective
Publication title
Coatings; Basel
Volume
15
Issue
3
First page
322
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-10
Milestone dates
2025-02-12 (Received); 2025-03-05 (Accepted)
Publication history
 
 
   First posting date
10 Mar 2025
ProQuest document ID
3181435338
Document URL
https://www.proquest.com/scholarly-journals/fluidized-bed-chemical-vapor-deposition-coating/docview/3181435338/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-27
Database
ProQuest One Academic