Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To address the urgent demand for autonomous rapid initial alignment of vehicular inertial navigation systems in complex battlefield environments, this study overcomes the technical limitations of traditional stationary base alignment methods by proposing a robust moving-base autonomous alignment approach based on multi-source information fusion. First, a federal Kalman filter-based multi-sensor fusion architecture is established to effectively integrate odometer, laser Doppler velocimeter, and SINS data, resolving the challenge of autonomous navigation parameter calculation under GNSS-denied conditions. Second, a dual-mode fault diagnosis and isolation mechanism is developed to enable rapid identification of sensor failures and system reconfiguration. Finally, an environmentally adaptive dynamic alignment strategy is proposed, which intelligently selects optimal alignment modes by real-time evaluation of motion characteristics and environmental disturbances, significantly enhancing system adaptability in complex operational scenarios. The experimental results show that the method proposed in this paper can effectively improve the accuracy of vehicle-mounted alignment in motion, achieve accurate identification, effective isolation, and reconstruction of random incidental faults, and improve the adaptability and robustness of the system. This research provides an innovative solution for the rapid deployment of special-purpose vehicles in GNSS-denied environments, while its fault-tolerant mechanisms and adaptive strategies offer critical insights for engineering applications of next-generation intelligent navigation systems.

Details

Title
In-Motion Initial Alignment Method Based on Multi-Source Information Fusion for Special Vehicles
Author
Chang, Zhenjun; Zhang, Zhili; Zhou, Zhaofa; Li, Xinyu  VIAFID ORCID Logo  ; Hao, Shiwen; Sun, Huadong
First page
237
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181453536
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.