Content area

Abstract

This study proposes a comprehensive framework for integrating data-driven approaches into policy analysis and intervention strategies. The methodology is structured around five critical components: data collection, historical analysis, policy impact assessment, predictive modeling, and intervention design. Leveraging data-driven approaches capabilities, the line of work enables advanced multilingual data processing, advanced statistics in population trends, evaluation of policy outcomes, and the development of evidence-based interventions. A key focus is on the theoretical integration of social order mechanisms, including communication modes as institutional structures, token optimization as an efficiency mechanism, and institutional memory adaptation. A mixed methods approach was used that included sophisticated visualization techniques and use cases in the hospitality sector, in global food security, and in educational development. The framework demonstrates its capacity to inform government and industry policies by leveraging statistics, visualization, and AI-driven decision support. We introduce the concept of “institutional intelligence”—the synergistic integration of human expertise, AI capabilities, and institutional theory—to create adaptive yet stable policy-making systems. This research highlights the transformative potential of data-driven approaches combined with large language models in supporting sustainable and inclusive policy-making processes.

Details

1009240
Business indexing term
Title
An Institutional Theory Framework for Leveraging Large Language Models for Policy Analysis and Intervention Design
Author
de Curtò, J 1   VIAFID ORCID Logo  ; de Zarzà, I 2   VIAFID ORCID Logo  ; Leandro Sebastián Fervier 3   VIAFID ORCID Logo  ; Sanagustín-Fons, Victoria 3   VIAFID ORCID Logo  ; Calafate, Carlos T 4   VIAFID ORCID Logo 

 Department of Computer Applications in Science & Engineering, BARCELONA Supercomputing Center, 08034 Barcelona, Spain; Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas, 28015 Madrid, Spain; Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; [email protected] 
 Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; [email protected]; Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, 50009 Zaragoza, Spain 
 Departamento de Psicología y Sociología, Universidad de Zaragoza, 50009 Zaragoza, Spain; [email protected] (L.S.F.); [email protected] (V.S.-F.) 
 Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 València, Spain; [email protected] 
Publication title
Volume
17
Issue
3
First page
96
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-02-20
Milestone dates
2025-01-06 (Received); 2025-02-17 (Accepted)
Publication history
 
 
   First posting date
20 Feb 2025
ProQuest document ID
3181454275
Document URL
https://www.proquest.com/scholarly-journals/institutional-theory-framework-leveraging-large/docview/3181454275/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-27
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic