Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The real-time temperature prediction of chips is a critical issue in the semiconductor field. As chip designs evolve towards 3D and high integration, traditional analytical methods such as finite element software and HotSpot face bottlenecks such as high difficulty in modeling, costly computation, and slow inference speeds when dealing with large-scale, multi-hotspot chip thermal analysis. To address these challenges, this paper proposes a real-time temperature prediction model for multi-core chips based on Graph Convolutional Neural Networks (GCNs) that includes the following specific steps: First, the multi-core chip and its temperature power information are represented by a graph according to the physical pattern of heat transfer; Second, three strategies—full connection, setting a truncation radius, and clustering—are proposed to construct the adjacency matrix of the graph, thus supporting the model to balance between computational complexity and accuracy; Third, the GCN model is improved by assigning learnable weights to the adjacency matrix, thereby enhancing its representational power for the temperature distribution of multiple cores. Experimental results show that, under different node numbers and distributions, our proposed method can control the Mean Squared Error (MSE) error of temperature prediction within 0.5, while the single inference time is within 2 ms, which is at least an order of magnitude faster than traditional methods such as HotSpot, meeting the requirements for real-time prediction.

Details

Title
Real-Time Temperature Prediction for Large-Scale Multi-Core Chips Based on Graph Convolutional Neural Networks
Author
Miao, Dengbao 1   VIAFID ORCID Logo  ; Duan, Gaoxiang 1 ; Chen, Danyan 1 ; Zhu, Yongyin 1   VIAFID ORCID Logo  ; Zheng, Xiaoying 1   VIAFID ORCID Logo 

 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; [email protected] (D.M.); [email protected] (G.D.); [email protected] (D.C.); [email protected] (Y.Z.); University of Chinese Academy of Sciences, Beijing 100049, China 
First page
1223
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181455926
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.