Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, to enhance the system reliability under false data injection (FDI) attacks and DC-link voltage (DCLV) sensor failures, a hybrid control strategy for a DC microgrid (DCMG) based on the Lagrange extrapolation and voltage observer is proposed. Under normal conditions without FDI attacks or DCLV sensor failures, the DCMG system works in a distributed control scheme. To enhance the reliability of the system under the DCLV sensor failure or FDI attack, the DCMG system utilizes a hybrid control strategy that combines distributed control with decentralized control. The hybrid control strategy is achieved by the proposed detection algorithms for FDI attacks and DCLV sensor failures. The detection of FDI attacks is accomplished by comparing the predicted secondary controller output based on the Lagrange extrapolation with the actual one. When a power agent detects an FDI attack, its control mode is switched to decentralized control by using the proposed hybrid control strategy. The DCLV sensor failure detection algorithm to enhance system reliability against DCLV sensor failures is achieved by comparing the estimated DCLV with the measured one from the voltage observer. Upon detecting a DCLV sensor failure, the operation of the power agent is switched to the current control mode to sustain the system operation even under DCLV sensor failures. The proposed detection algorithms are simple, effective, and precise, operating without mutual interference that deteriorates the detection accuracy. Simulation and experiments are carried out under various uncertain test conditions to validate the reliability and effectiveness of the proposed control strategy.

Details

Title
Hybrid Control Strategy for DC Microgrid Against False Data Injection Attacks and Sensor Faults Based on Lagrange Extrapolation and Voltage Observer
Author
Seong-Bae, Jo 1   VIAFID ORCID Logo  ; Dat Thanh Tran 1   VIAFID ORCID Logo  ; Nguyen, Hieu Xuan 1 ; Kim, Myungbok 2   VIAFID ORCID Logo  ; Kim, Kyeong-Hwa 1   VIAFID ORCID Logo 

 Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea; [email protected] (S.-B.J.); [email protected] (D.T.T.); [email protected] (H.X.N.) 
 Purpose Built Mobility Group, Korea Institute of Industrial Technology, 6 Choemdan-gwagiro 208-gil, Buk-gu, Gwangju 61012, Republic of Korea; [email protected] 
First page
1087
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181456112
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.