Content area

Abstract

As malware continues to evolve, AI-based malware classification methods have shown significant promise in improving the malware classification performance. However, these methods lead to a substantial increase in computational complexity and the number of parameters, increasing the computational cost during the training process. Moreover, the maintenance cost of these methods also increases, as frequent retraining and transfer learning are required to keep pace with evolving malware variants. In this paper, we propose an efficient knowledge distillation technique for AI-based malware classification methods called Self-MCKD. Self-MCKD transfers output logits that are separated into the target class and non-target classes. With the separation of the output logits, Self-MCKD enables efficient knowledge transfer by assigning weighted importance to the target class and non-target classes. Also, Self-MCKD utilizes small and shallow AI-based malware classification methods as both the teacher and student models to overcome the need to use large and deep methods as the teacher model. From the experimental results using various malware datasets, we show that Self-MCKD outperforms the traditional knowledge distillation techniques in terms of the effectiveness and efficiency of its malware classification.

Details

1009240
Title
Self-MCKD: Enhancing the Effectiveness and Efficiency of Knowledge Transfer in Malware Classification
Publication title
Volume
14
Issue
6
First page
1077
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-08
Milestone dates
2025-01-30 (Received); 2025-03-06 (Accepted)
Publication history
 
 
   First posting date
08 Mar 2025
ProQuest document ID
3181457752
Document URL
https://www.proquest.com/scholarly-journals/self-mckd-enhancing-effectiveness-efficiency/docview/3181457752/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-28
Database
ProQuest One Academic