Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the global commercialization of hydrogen fuel cell vehicles, the number of hydrogen refueling stations is steadily increasing. On-site hydrogen production stations are expected to play a key role in future power systems by absorbing renewable energy and supplying electricity during peak grid loads, aiding in peak shaving and load leveling. However, renewable energy sources like photovoltaic (PV) systems have highly fluctuating power generation curves, making it difficult to provide stable energy for hydrogen production. Traditional stations mainly use alkaline electrolyzers (AE), which are sensitive to power fluctuations, leading to operational instability. To address this, this paper proposes using capacitors and energy storage batteries to mitigate PV fluctuations and introduces a combined AE and Proton Exchange Membrane (PEM) electrolyzer hydrogen production method. Study cases demonstrate that capacitors and energy storage batteries reduce the variance of PV power output by approximately 0.02. Building on this, the hybrid approach leverages the low cost of AE and the rapid response of PEM electrolyzers to better adapt to PV fluctuations and maximize PV absorption. The model is mathematically formulated and the station’s equipment planning and operational strategy are optimized using CPLEX. The results show that, compared to pure AE and PEM hydrogen production, the combined AE and PEM hydrogen production method reduces the total annual cost of the hydrogen refueling station by 4.3% and 5.9%, respectively.

Details

Title
Equipment Sizing and Operation Strategy of Photovoltaic-Powered Hydrogen Refueling Station Based on AE-PEM Coupled Hydrogen Production
Author
Zheng, Yan; Fan, Yanfang  VIAFID ORCID Logo  ; Hou, Junjie
First page
1195
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181458703
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.